
DATA INTEGRATION
BEST PRACTICES

jacoB horBulyk

DATA INTEGRATION
BEST PRACTICES

jacoB horBulyk

An company

Meet the author

JACOB HORBULYK

Pre-Sales & Professional Service Software Engineer

Jacob Horbulyk is a pre-sales & professional service software
engineer at elastic.io. Over the last two years, he has led a
number of integration projects across a wide range of industries
from education to e-commerce. During that time, he has made
all the possible mistakes so that others won’t have to, even if it
makes others look smarter. Currently, he is doing what he can
to make potentially bland and monotonous integration projects
run as quickly and as seamlessly as possible by mastering how to

take apart an integration problem and put together a generic, reusable and correct solutions.
On the side, he mentors students, helps them succeed, watches them when they fail and then
builds the tools they need to be successful the next time around. He hopes that you can learn
from those mistakes with the content that is inside this book.

When he isn’t working at elastic.io, he is learning German so that he can fit into his new home
in Bonn, taking road trips on the weekend and playing board games to stave off senility.

About elastic.io

elastic.io is an industry-fi rst microservices-based hybrid
integration platform as a service (iPaaS) that empowers IT
organizations to accelerate enterprise digital transformation.
In 2017, elastic.io became part of mVISE Group, a German
public company with over 15 years of consultancy and
project experience in IT.

elastic.io’s primary motivation is to support large
corporations and mid-size businesses alike in their digital
strategy initiatives by helping them spend less time on
gathering data together across the entire organization, and
instead, have enough time and resources to focus on using
this data to improve business operations or to develop new
products and services.

Contents
Introduction.. 1

Data Integration Best Practices... 1

PART 1: INTEGRATION PROBLEMS.. 2

Chapter I.. 3
Identifying and Solving Integration Problems.. 3

Technical mechanics vs business rules.. 4

Technical mechanics problem: Moving data in and out of systems.................... 4

Chapter II... 6
Mechanisms to Detect Data Changes.. 6

Why is detecting data changes important?... 7

Polling by timestamp... 7

Data push from place of change.. 8

Bulk extract with delta detection.. 8

Chapter III.. 10
Connection Points Web Server API vs Database .. 10

Web server API.. 11

Database views/database tables.. 12

Chapter IV.. 13
Data Duplication and ID Linking... 13

Point to point ID linking... 14

Dedicated system for storing ID links.. 15

Universal ID... 15

Chapter V... 16
Data Transformation.. 16

Data transformation.. 17

Data mapping... 18

Types of fields to map.. 18

One directional vs bi-directional transformations... 19

Master schemas & master data systems... 19

Chapter VI.. 21
Handling Data Integration Errors ... 21

Maintaining consistency.. 22

Conflict resolution.. 23

Hierarchy preservation.. 24

PART 2: DIFFERENT TYPES OF INTEGRATION.. 25

Chapter VII.. 26
Request-Reply vs Asynchronous Integration... 26

Request-reply (synchronous).. 27

Asynchronous integration... 28

Chapter VIII... 30
What Systems Move the Data?... 30

When systems move data without intermediaries.. 31

Integration layer / iPaaS option.. 32

Chapter IX.. 34
Differences in What is Being Integrated... 34

Integration with a shared authentication mechanism.. 35

Integration between different parts of a system.. 36

Event propagation between systems... 36

Data synchronization between systems.. 37

PART 3: INTEGRATION BEST PRACTICES MOVING FORWARD......................... 39

Chapter X .. 40
Integration Projects: The Real and Hidden Costs.. 40

Creation costs... 41

Operational costs... 42

Retirement costs... 42

Chapter XI ... 43
How to Set the Framework for Data Integration Projects... 43

Describe integrations better... 44

Consider using an iPaaS / integration layer.. 45

Chapter XII.. 47
Separation of Environments and Log Collection.. 47

Separation of environments... 48

Log collection.. 49

Conclusion... 51

1

Data Integration Best Practices | Jacob Horbulyk elastic.io

Introduction

DATA INTEGRATION
BEST PRACTICES

One would think that the topic of data integration and application integration has been so
widely covered that there really should be no questions left. And yet, we are regularly asked
questions both from the IT people and the business users. So, we decided to answer the most
frequently asked questions in this e-book on data integration best practices.

This e-book will focus both on the technical side of the data integration as well as answering
the questions that drive the business decisions regarding the selection of a suitable tool and
an appropriate software vendor. However, it is equally suitable for those who prefer to handle
all integration work on their own as well as for those who decide to work with a third-party
solution.

PART 1

INTEGRATION
PROBLEMS

Chapter I

IDENTIFYING AND
SOLVING INTEGRATION

PROBLEMS

4

Data Integration Best Practices | Jacob Horbulyk elastic.io

Before we can engage with the data integration best practices, it is important to understand
what issues both IT specialists and business users are faced with when trying to integrate two
or more systems, be it business applications, databases or even entire platforms. Hence, this
is where we are going to start from.

TECHNICAL MECHANICS VS BUSINESS RULES

Fundamentally, all integration problems can be broken down into two main categories: the
problems that concern the pure technical mechanics of integration and the problems that are
related to the correct application of business rules. Technical problems are generally lower
level in nature and answer the question of “How?”, while business problems are normally
higher level in nature and answer the question of “What?”

To give you an example, the desire to have customer information copied from the CRM into
the ERP would be a business problem. The technical problem is, on the other side, to identify
and pick which APIs to interact with to solve the business problem.

It is important to keep in mind that the descriptions of the requirements associated with
the problem on the business level may not necessarily line up with the technical details. For
instance, a business expert may see and describe requirements involving contacts where
contacts are associated with addresses. At the same time, from a technical standpoint, contacts
and addresses may exist as diff erent objects within the system.

In plain terms, an IT person will see contacts and addresses as two absolutely separate items,
while a business person would associate a given contact with a given address, seeing them as
one whole piece of information.

This doesn’t mean, though, that one standpoint is better than the other. On the contrary, the
individuals who can answer technical problems are in general not the individuals who also
should answer business problems, and vice versa.

 TECHNICAL MECHANICS PROBLEM: MOVING DATA IN AND OUT
OF SYSTEMS

In the fi rst two chapters of our e-book on data integration best practices, we are going to
tackle the technical specifi cs of moving data in and out of business applications, databases, or
platforms.

On a very high level of abstraction, one can sum up the process of data integration the following
way: In order for data to move between systems at some point, the data will go from being
inside the system to, obviously, not inside the system (or vice versa).

These operation can be categorized into read operations that don’t change data and write
operations that do change data, and there are multiple mechanics that can make such
operations occur. Polling by a timestamp would be one example, bulk extra with delta deletion

5

Data Integration Best Practices | Jacob Horbulyk elastic.io

– another. The selection of an implementation mechanic is, in general, independent of the
business requirements that drive the particular integration need.

Ultimately, the selected mechanic must have the following properties:

 It must be suffi ciently performant
 There must be a commitment from the software vendor that this

mechanism will continue to exist after any future updates to the
software
 It must be allowed in the sense that your IT security team is
not opposed to the permissions granted to that mechanism
 It must be capable of reading and modifying the
data as required by the applicable business rules
 Last but not least, it must not break the actual

business application / database / platform

In the next chapter we will be going through several mechanisms for
the detection of data changes and the diff erent technical sub-decisions

that need to be made in this respect.

Ultimately, the selected mechanic must have the following properties:

 It must be suffi ciently performant
 There must be a commitment from the software vendor that this

mechanism will continue to exist after any future updates to the

In the next chapter we will be going through several mechanisms for
the detection of data changes and the diff erent technical sub-decisions

that need to be made in this respect.

Chapter II

MECHANISMS TO
DETECT DATA CHANGES

7

Data Integration Best Practices | Jacob Horbulyk elastic.io

In the previous chapter of Data Integration Best Practices, we defi ned that all problems related
to data integration can be essentially broken down into large categories: The ones that have
something to do with technical mechanics and the ones that are connected to business rules.

So, in this chapter, we will review one of the purely technical questions, namely how to detect
any changes in data. Within the scope of this topic, it is important to note that the technical
decisions that will be covered in this and the next few chapters are not necessarily dictated by
what type of system you’re dealing with: cloud-based, on-premises systems or hybrid.

 WHY IS DETECTING DATA CHANGES IMPORTANT?

When synchronising large amounts of data and/or working with dynamically changed data, it’s
highly valuable to only synchronize the data that was actually changed. Otherwise, re-syncing
all data records every time might, for example, consume a lot of computing resources and
eventually lead to an unnecessary system overload.

This means that detection of only the data that was changed is a crucial property of the
systems. The following sections describe the diff erent strategies to do such detection.

POLLING BY TIMESTAMP

For this strategy to work, the system that stores data, e.g. a CRM application, also stores
and maintains a last modifi ed date along. This date describes when a given record or entity
has last been modifi ed including creation and possibly, even deletion. We also covered this
feature in our somewhat older blog article “6 Characteristics That Make APIs Fit for Application
Integration”.

When this strategy applies, there is some integration fl ow somewhere that wakes up on a
scheduled interval and looks for all records/entities that have been updated since this fl ow
was last run. It then reports only those records as changed.

In order for this strategy to work, the integration fl ow that wakes up must either be able to
store the information when it was last run or otherwise reliably learn when it was last run.

8

Data Integration Best Practices | Jacob Horbulyk elastic.io

Pros:

 Wide support for the strategy
 Has built-in failure tolerance as queries

can be repeated if the request has failed
or was otherwise somehow interrupted

Cons:

 Not all systems support this feature
 Delay between modifi cation occurring

and change detection, unless the
integration fl ow is scheduled to wake up
every millisecond

 Not quite resource effi cient as many
checks for data changes will be empty if
the dataset does not change often

 DATA PUSH FROM PLACE OF CHANGE

In this strategy, the system that stores data can send modifi cations made to data to other
systems as the modifi cations occur. For example, it could publish a REST/SOAP message over
HTTP(S), send an email or publish some message to a service bus.

Pros:

 Data changes can be detected faster
than with polling by timestamp

 Resources are used more effi ciently as
there will be no “blank” runs

Cons:

 Again, not all systems support this
feature

 If a message to be published got lost, it
cannot be repeated. Therefore, you need
to know how to recover from failures in
the push infrastructure

 BULK EXTRACT WITH DELTA DETECTION

This strategy is the last resort strategy when the above two strategies can not be applied. In this
strategy, in addition to all data records being stored inside the system, there exists a hashed
copy of all records along with their IDs outside the system. A simple example would include
data stored inside an CRM application and the copy of that data stored in some integration
middleware – i.e. outside the CRM application.

At a regular interval, a scheduled integration fl ow will wake up, read all data records and
compute their hash – in other words, their unique code. Then it will compare the value of each
such hash with the stored hash for each corresponding record. If the hashes do not match, it
will report the record as changed and store the new hash.

9

Data Integration Best Practices | Jacob Horbulyk elastic.io

Pros:

 This feature is universally supported
 It might be the only way to detect

deletion of a data record, because not
many systems have a built-in mechanism
for that

 Can be extended to detect fi eld level
changes, meaning that it will detect only
the data changes that are of a particular
interest / relevance for the given
integration scenario

Cons:

 It’s very resource intensive and, as
a consequence, cannot be run as
frequently

 Requires an additional datastore
 There might be a risk of falsely reporting

deletions if the actual system is down for
some reason and the integration fl ow
is trying to read records at exactly the
same moment

In order to perform any of the aforementioned “extractions”, there must obviously be a way
to connect to a system in the fi rst place. Indeed, even though we often talk about disparate
systems and data silos in the context of application integration, no system is designed as a
sealed cocoon.

So, in the next chapter, we’ll briefl y review the two ways to connect to a system, going through
the pros and cons of each.

 Chapter III

CONNECTION POINTS
WEB SERVER API VS

DATABASE

11

Data Integration Best Practices | Jacob Horbulyk elastic.io

In the previous chapter, we went through various techniques to detect data changes in systems.
This is essential if we want to have updates to data records as soon as they occur so that we
can, for example, send orders to an address that is actually the current one. As mentioned
before, in order for the data exchange to happen, there must be a way to connect to a system
in the fi rst place. Here there is a diff erence between on-premises and cloud-based systems.

Cloud-based software as a service (SaaS) providers usually only expose APIs on the web server,
through which you can interact with a database. This way they can ensure
with higher level of certainty that API behavior can be maintained as
the product develops and that business rules are enforced. Plus, it
is considerably easier to build a secure mechanism into an API and
protect the database simply by not giving any access to it.

Then there are some custom built or specifi c purpose applications
that only expose database connections – but not the
API.

Last but not least, an on-premises system would
often include both a web server that exposes an
API and a corresponding database. And indeed, since this
application resides on-premises, it is easier to ensure that the
same level of security standards applies to the API as well as
the database. Which means that in the case of on-premises
systems, both API and database may provide connection
opportunities.

Now let’s review their pros and cons.

 WEB SERVER API

Exposing a web server API is often the only way for web-based SaaS.

Pros:

 Enforces the largest set of business rules
 Provides the highest level of abstraction
 Enables the most granular permissioning
 Can have mechanisms to handle demand

spikes
 The chances that a published web server

API will work after one or two years
are quite high – or at least you will be
notifi ed when the changes are made

Cons:

 This mechanism is built on top of HTTP(S)
which is not exactly reliable, because
an HTTP(S) call may fail. It is also pretty
verbose, meaning that it requires more
data to be transmitted than necessary

 The set of operations you can do
through a web server API is rather limited
compared to the set of all operations
that are possible

 Has performance overhead

through which you can interact with a database. This way they can ensure
with higher level of certainty that API behavior can be maintained as
the product develops and that business rules are enforced. Plus, it
is considerably easier to build a secure mechanism into an API and
protect the database simply by not giving any access to it.

Then there are some custom built or specifi c purpose applications
that only expose database connections – but not the

API and a corresponding database. And indeed, since this
application resides on-premises, it is easier to ensure that the
same level of security standards applies to the API as well as
the database. Which means that in the case of on-premises
systems, both API and database may provide connection

12

Data Integration Best Practices | Jacob Horbulyk elastic.io

 DATABASE VIEWS/DATABASE TABLES

Pros:

 Can be more performant
 Often database expertise is more

plentiful than application expertise
 Often results in fewer bugs, because

there are simply fewer layers of logic
you’re going through, and it is simple
to the extent that it’s hard not to
understand it correctly

 Can be used when web server APIs don’t
exist or are otherwise not very good

Cons:

 Since most of the time, this is not an
offi cial API, it is subject to unexpected
changes during version upgrades,
updated, etc, which might result in a
disruption of an integration fl ow.

It is also important to note that within this arrangement, database views provide more
abstraction than database tables. To understand this, imagine you have a contacts table and
an address table as separate tables. In order to read data from them, you have to know that
there is a contacts table and an address table in the fi rst place. Then you would need to know
how they are related or do the join(s) yourself. Whereas with the database views, this might be
several tables combined and presented as one.

In the next chapter, we will talk about yet another integration challenge related to technical
mechanics. We will go through the techniques to eff ectively maintain and keep up-to-date the
data that is “duplicated” across several various systems.

Chapter IV

DATA DUPLICATION
AND ID LINKING

14

Data Integration Best Practices | Jacob Horbulyk elastic.io

Let us fi rst make it clear what ID linking is about. To do that, let’s take a CRM system as an
example.

In general, the possibility that there are more than one person in the system that have the
same fi rst and last names is quite high. And it is inevitable that sometimes, some pieces of
information about these people will change. So, how would a CRM system “know” that it is the
Jane Smith in Branchville, Virginia, whose billing address needs to be updated, and not the
Jane Smith in Shoreline, Washington? Quite simple – the CRM has assigned a unique ID to each
Jane Smith, by which it can “distinguish” one from the other.

But what if we have two CRM systems – one that is used in, say, a parent company and the
other one in a daughter company? There can be a business scenario where both of them
need to store the same information – both Jane Smiths – but each would assign its own ID just
because they are designed this way.

This is where ID linking comes into play. When the same record is stored on more than one
system, there must be some way to correlate these records between systems. This is essential
in the case when you have data that can change, because then you need to fi nd a way to
distinguish between an existing data that has changed and a completely new data that is just
somewhat similar to the existing data. And here are some techniques to solve these problems.

POINT-TO-POINT ID LINKING

In this solution, if data is replicated between systems, one (or more) of the systems is
responsible for storing other systems’ ID for the related object. The idea behind it is that,
taking the scenario above, one CRM system would store the ID of another CRM. In addition to
that, there is a separate system which has the sole purpose of keeping track of these ID links.

Pros:

 It’s easy to set up and frequently
available

 Provides a convenient mechanism for
end user to modify links

 This is a natural way of storing links. After
all, the life cycle of a link is logically the
same as the life cycle of a linked object

Cons:

 Conceptual complexity grows quite
quickly as use cases and additional
systems are added

 This method requires adding write
permissions to integration fl ows that
otherwise wouldn’t require it

 It also requires the systems to have
available fi elds for foreign IDs – that is,
for the IDs of other systems – or have
confi gurable schemas. This implies
having space to store this additional
information. However, you may not have
this capability in terms of the way how
the system is designed.

 It is easy to inadvertently mess up data
integrity

 It must be designed per pair of systems

15

Data Integration Best Practices | Jacob Horbulyk elastic.io

 DEDICATED SYSTEM FOR STORING ID LINKS

In this solution, a separate database is set up which is responsible for correlating IDs between
objects.

Pros:

 It’s conceptually simple
 Scales as number of systems grow

Cons:

 There is yet one more database to
maintain

 It’s diffi cult for users to visualize or
modify linked IDs

 UNIVERSAL ID

In this solution, when a record such as a new customer or a new product is created, they are
assigned a globally unique ID that is referenced by all systems. For this technique to be possible,

there must be just one system that is responsible for generating IDs for all records. It
would also be responsible for every other system to learn these IDs.

Pros:

 It’s conceptually simple

Cons:

 It requires LOTS of human coordination
 Eliminating duplicate or redundant

information becomes hard
 All systems must be designed to

accommodate a universal ID

In the next chapter of Data Integration Best Practices series, we will
have a look at the problem that is related essentially to the question
of business rules: Data transformation. We will review the three

categories into which systems can be classifi ed based on how they
handle their schema. In addition to that, we will review what

master schemata are and how they are related to master
data systems.

Pros:

 It’s conceptually simple

In the next chapter of Data Integration Best Practices series, we will
have a look at the problem that is related essentially to the question
of business rules: Data transformation. We will review the three

categories into which systems can be classifi ed based on how they
handle their schema. In addition to that, we will review what

master schemata are and how they are related to master

Chapter V

 DATA
TRANSFORMATION

17

Data Integration Best Practices | Jacob Horbulyk elastic.io

So far, we have addressed only the problems that concern the pure technical mechanics of
integration. Now it’s time to review the challenges that are related to the correct application of
business rules. These are, as we stated in the fi rst article of our blog series, are typically of
higher level in nature and answer the question of “What?”

DATA TRANSFORMATION

Almost all systems have some sort of schema, by which we mean the structure of the
information that exists in a system. In general, schema includes two parts:

 A list of object types within the system
 A set of rules which describe the structure of a

given object of a given type

Generally, systems can be classifi ed into one of three
categories based on how they handle their schema.

Zero cuStomiZation

In the fi rst category, all customers of a system get the same
set of objects and the same set of rules that describe object
structure. In this scenario, the software vendor defi nes and
delivers this objects list and set of rules. A typical example of
such a system would be credit card payment processing. All
credit cards must contain the same set of information to
allow for transactions between diff erent banks. Hence,
it doesn’t matter what system you use for credit
card payment processing. You are never going to
have something other than these specifi c objects
and you’ll never have any customizations to those
objects, such as “process this custom credit card”.

Partial cuStomiZation

In the second category, all customers of a system get the same set of objects but they
can customize the structure of these objects. In this scenario, the software vendor,
too, is the one which sets this objects list. A good example would be an eCommerce
application. Here, you will have such objects as products, orders, customers, and so
on. There is no particular reason to invent some other type of object. However, you can
customize certain information related to, say, the product object, depending on what you
are selling. For example, a shop selling computer parts would have diff erent adjectives to
describe their products than a shop that sells soap. These adjectives will be part of the product
information.

Almost all systems have some sort of schema, by which we mean the structure of the
information that exists in a system. In general, schema includes two parts:

In the fi rst category, all customers of a system get the same
set of objects and the same set of rules that describe object
structure. In this scenario, the software vendor defi nes and
delivers this objects list and set of rules. A typical example of
such a system would be credit card payment processing. All
credit cards must contain the same set of information to

In the second category, all customers of a system get the same set of objects but they
can customize the structure of these objects. In this scenario, the software vendor,
too, is the one which sets this objects list. A good example would be an eCommerce
application. Here, you will have such objects as products, orders, customers, and so

18

Data Integration Best Practices | Jacob Horbulyk elastic.io

full cuStomiZation

Last but not least, in the third category, customers have the ability to customize everything:
the set of objects as well as the structures for these objects. An example of that would be
a CRM system that a travel company initially bought for customer management. Since the
software vendor ensures high levels of customization, the company decides to adapt it to its
travel management needs as well. And so, they will create new objects such as a trip object, a
destination object, and a ticket object.

 DATA MAPPING

When we need to sync data between systems that have been developed independently of each
other, the schemas for these systems will be diff erent. This means that some transformation
needs to occur to the structure as it moves between systems.

Understanding how this data needs to be transformed – in other words, what fi elds in the
fi rst schema need to map to the fi elds in the second schema – is generally a business level
problem. Furthermore, this problem needs to be solved per pair of systems.

Additionally, if either system does not fall into the ‘zero customization’ category described
above and it has undergone some customizations, then the generated mapping rules will be
applicable only to these specifi c systems purchased by this one specifi c company. In other
words, no other company will be able to use the same mapping rules unless they customize
the systems in question in exactly the same way.

 TYPES OF FIELDS TO MAP

One of the things that is often overlooked when describing the requirements for a mapping
is that not all fi elds can be mapped as “simple” fi elds. By simple fi elds we mean information
that is a series of strings, numbers, booleans, timestamps, and so on, that exist as pieces of
information in their own right, and could be held in structures or arrays. An example of such
information would be Name, Email or Address on a contact in a CRM system.

Now, in addition to the aforementioned “simple” fi elds, let’s consider the following types of
information that could be stored as part of an object:

 Static Enums: These contain information that indicates a selection from a fi xed list of
values. For example, consider Gender or Offi ce Location Code on a contact. Knowing
that a contact is “M” and works in the offi ce “DE01” already provides some information
about the contact. However, knowing the list of options and what options exist provides
useful context.

 Dynamic Enums: These are information that isn’t fully free form but selected from a
range of values with the possibility of adding new values. Following the same example
use case, on a contact in a CRM system, this could be Department or Job Title.

 The ID of the object itself: For example, Contact ID.

19

Data Integration Best Practices | Jacob Horbulyk elastic.io

 The ID of related objects: For example, Manager ID, Company ID, Active Subscription(s)
ID(s), and so on.

the maPPing ruleS

We’ve already previously talked about the ID linking problem so we will focus on mapping rules
for simple fi elds, static enums and dynamics enums.

 Simple fi elds are easiest to map: one can either move the data as is or transform the
data based on some fi xed rules that don’t require additional inputs.

 Static enums often require an additional dictionary to perform the mapping. This
dictionary is used to convert the value of one possibility in one system to the value in
the other system. A simple example would be converting “Female” to “Ms.”

 Dynamic Enums are often transferred as they are, but this transformation is slightly
more tricky because of the fact that sometimes one needs to add new options to
the range of existing valid values before transferring data. For example, imagine we
are moving profession information into a system where each assignable profession
must be explicitly added to a list of allowed options. So far, that system has only seen
“engineer”, “accountant” and “product manager”. If we now want to add a contact with
profession “lawyer”, we must fi rst add “lawyer” to the list of allowed professions.

 ONE DIRECTIONAL VS BI-DIRECTIONAL TRANSFORMATIONS

If data fl ows in only one direction, then the transformation logic has to be defi ned in only one
direction. A business case example would be an SMS push after the dispatchment of an order.

If data fl ows in two directions, then the transformation logic has to be defi ned, of course,
in both directions. Moreover, the transformations described in the logic must be reversible.
Otherwise, there is only one way in which you can transport data. A very simple example
of that would be two CRM systems. One of them accepts German letters and another one
doesn’t. For a German address to be able to sync between these two, the transformation logic
for the address fi eld must convert the letter “ß” in the German word “Strasse” (= “street”) into
double “ss” and backwards.

 MASTER SCHEMAS & MASTER DATA SYSTEMS

When the number of data systems being synchronized is larger than 2, the number of
connection pairs increases exponentially because of the many possible pairing combinations
between these systems. In order to keep the number of pairs under control, one solution is to
create a master schema or add a master data system. This technique requires each schema to
be mapped to the master schema only once, instead of being mapped to each other system.

The idea behind a master schema is that one defi nes a schema that meaningfully represents
objects in all systems. Transformations are then written between a given systems schema and

20

Data Integration Best Practices | Jacob Horbulyk elastic.io

the master schema. This reduces the number of transformation pairs considerably.

A step beyond master schema is to create a master data system. The idea behind a master
data system is that in addition to data being stored in systems that manipulate or otherwise
use the data, the data is also stored in the master data system. All integrations are then written
to work between each system and the master data system.

So far, we have covered the problems that concern the pure technical mechanics of integration
and the problems that depend on the correct application of business rules. In the next chapter,
we will have a look at the problems that combine both. To be more precise, we will focus on
how to maintain data consistency. We will review the types of errors that can occur during an
integration and the ways how to potentially handle them.

Chapter VI

HANDLING DATA
INTEGRATION ERRORS

22

Data Integration Best Practices | Jacob Horbulyk elastic.io

As we mentioned at the outset, all integration problems can be broken down into two main
categories: problems relating to the technical mechanics of integration and problems relating
to the correct application of business rules.

There are, however, certain types of problems that originate in both. In this chapter, which is
also closing part one of our e-book, we are going to review them and suggest a few ways to
deal with them.

MAINTAINING CONSISTENCY

If we receive a large number of errors, we need to fi nd a way to sort them out depending on
the type. The following errors can occur during an integration.

 authentication ProBlemS

These errors occur when the credentials provided to perform an integration are invalid. This can
happen to a previously valid account as well when a token has expired, a password changed, or
a system user who is trying to access it doesn’t exist in the system anymore. In order to solve
these problems, the user will need to provide new credentials, or the permissions associated
with a credential need to be expanded.

 authoriZation ProBlemS

These errors occur when the credentials provided to perform an integration lack the
permissions to do the required operations. When systems support the concept of user specifi c
permissions or user roles, API access usually happens in the context of a user or based on
a list of granted/not granted permissions. This means that actions done through the API will
be allowed or disallowed based on the permissions that the API user has or that are on a
permission whitelist. In general, based on the principle of least access, this list of permissions
should be as small as possible. However, if the permissions granted are insuffi cient, then
authorization problems like this will occur. The resolution to this problem is to expand these
permissions.

 BuSineSS valiDation error

This type of error happens when a system rejects a request because such a request would
violate the enforced business rules. These are often the result of incorrectly formulated
business rules. Another reason can be that system A has diff erent validation requirements
than system B. Let’s take as an example a fi ctional address. If you enter such an address
into your CRM system, there is a high probability that it would accept this address because it
doesn’t have the means to check its validity. It would look quite diff erently, though, if you were
to enter the same address in, say, your navigation app.

One way to solve this problem is to ensure that all systems storing data have the same validity
requirements. Another way is to only try to write data to a system once a record passes the

23

Data Integration Best Practices | Jacob Horbulyk elastic.io

validity requirements.

 SyStem availaBility ProBlemS

This type of error occurs when an integration can’t be
completed because a system goes down. In order to
solve this problem, the system that is down must be,
obviously, brought back online. Some other possible
causes of this include DNS, SSL and Disk space
problems. These need to be handled accordingly.

 tranSient ProBlemS

In this case, some sort of temporary issue appears that
is self-corrected. You can compare it with accessing a
website when you send your request and it times out.
If you try sending the same request a minute later, you
are most likely to succeed. In general, it is possible to
deal with this type of problems by setting up some
sort of an auto-retry for such cases.

 SyStem threSholD ProBlemS

Most systems have a fi nite capacity, either in terms of a
number of allowable API calls or computer resources. If those
resources are exceeded, then integrations will stop working.

 DeveloPer BugS

As the title says, such errors occur because the developer failed to take into account some
edge cases, or in other words, an unusual but a valid set of inputs.

 CONFLICT RESOLUTION

Sometimes you would need to confi gure two systems to mirror each other, so that if you
enter certain data, it will be automatically copied into another system. In such a scenario, it is
possible that users make confl icting edits in these two systems.

There are a number of ways to avoid such errors. One way is to set system A to be the source
of truth and system B to be the mirror. In other words, if there is any discrepancy between the
systems, then system A is considered accurate. It is possible to set this for either the entire
record or you can set this for each fi eld on the record.

Another option is to allow both to be the source of truth. However, if confl icting changes

In this case, some sort of temporary issue appears that
is self-corrected. You can compare it with accessing a

Most systems have a fi nite capacity, either in terms of a

24

Data Integration Best Practices | Jacob Horbulyk elastic.io

are then created, you would need to fi nd a technique to resolve the confl ict. This can be
complicated by the fact that two systems may record semantically equivalent data in diff erent
forms. Unfortunately, there is no generic solution to this potential problem.

 HIERARCHY PRESERVATION

Often there is linking between objects in a system. For example, in a CRM, a contact would
likely be linked to a company. This means that in order to create a customer that is linked to
a company, the company must be created before or at the same time as the customer. It is
important that this is considered into the design of any integration solution. In general, this
can be solved by understanding that the relationships between objects can be described as a
tree and that all “parents” must be synced before “children”.

At this point, we have covered the main problems you would typically face when trying to
integrate and sync data between diff erent systems. The next part of our e-book will be all
about diff erent types of integration. In the fi rst chapter, we will have a look at the request-reply
and async integrations, their pros and cons.

PART 2

DIFFERENT TYPES OF
INTEGRATION

Chapter VII

REQUEST-REPLY VS
ASYNCHRONOUS

INTEGRATION

27

Data Integration Best Practices | Jacob Horbulyk elastic.io

Moving on to the next part of our e-book on Data Integration Best Practices, in this chapter
we’re going to explore the main two types of integrations: asynchronous integration and
synchronous (also known as request-reply) integration.

Whether you need a fast response from the systems involved or the results to be delivered
further in the future, both request-reply and asynchronous integration off er their own pros
and cons and could be used for diff erent purposes.

 REQUEST-REPLY (SYNCHRONOUS)

Request-reply integrations require interactions with an external system to occur before an
operation is complete. In general, we need these types of integrations for rendering information
in front of a user in real time.

For example, a system needs to display a list of courses to a volunteer based on their profi le
while the list of courses is stored in a diff erent system. In order for this to happen, the system
requiring information must request information from the system
containing the information. And the system containing
information must reply to that request.

A common protocol for this exchange is HTTP(S) but
other protocols are possible. These requests may be
‘read’ operations that do not have any so called side
eff ects – that is to say “has an observable eff ect
besides returning a value”. However, they may
also be ‘write’ operations or other operations
with side eff ects.

In order for the requesting system to operate,
the system where the requests go to must be up
and available.

When building request-reply integrations, there are
two strategies as follows, each with their own pros
and cons.

 Direct requeStS

As the name suggests, these are requests from one system to another
without any intermediary system.

Pros:

 Data exchange happens fast
 It is reasonably simple to set up
 There are fewer failure points as there

are only two systems in play

Cons:

 Error tracing is diffi cult because you
wouldn’t usually have a visual interface or
built-in monitoring tools

 Credential management is diffi cult too

containing the information. And the system containing

A common protocol for this exchange is HTTP(S) but
other protocols are possible. These requests may be

28

Data Integration Best Practices | Jacob Horbulyk elastic.io

 requeStS through an integration layer

In this case, we have a third system between the requesting and the receiving system, which
plays a role of intermediary. This can be a third-party or in-house solution.

Pros:

 This third system can act as mediator
by modifying or enriching requests and
responses

 It can also act as a caching mechanism
when there is no built-in one

 It can also have a system health tool role
providing system monitoring. After all,
you have two systems talking to each
other directly, it’s hard to know if there is
a problem with that “conversation”. With
this third, intermediate layer, you can
check if this communication is OK or not.

 It can provide centralized logging,
error management and credential
management

 Additionally, it can act as an abstraction
layer. For instance, to collect information
from several similar sources such as
email providers where the actual source
is not relevant but the information is.

Cons:

 With on additional system now in play,
this adds yet another failure point

 Has some performance overhead since
the third system requires some time
to process and sort the information it
receives and sends

 ASYNCHRONOUS INTEGRATION

Asynchronous Integration is integration where the data does not have to be moved immediately
but can be moved at a later point in time. This means that the system sending a request
doesn’t have to wait for a reply in order to continue operating.

This type of integration is especially useful when we have large volumes of data to process or
when we don’t expect any immediate response. For instance, when we set up a regular data
sync between a CRM and ERP systems. If a sales employee enters a new account, the CRM
system would spot the change and push it, e.g. into a queue on an integration middleware. In
doing so, CRM has done its part of the deal. From there, it will be at some point picked up by
or pushed to the ERP system. It doesn’t really matter either for the employee or for the CRM
when the update occurs – immediately or in an hour – as long as it occurs eventually.

29

Data Integration Best Practices | Jacob Horbulyk elastic.io

Pros:

 Asynchronous integration is considered
to be more reliable than synchronous
integrations. Due to the fact that systems
don’t wait for each other, none of them
will have a timeout.

 Derived from the previous point,
asynchronous integration lead to higher
services availability as asynchronous
integration can wait for systems to
recover

 More effi cient use of machine resources
 The system can offl oad data when it is

not busy
 Batching becomes possible

Cons:

 The fi re and forget model means that
there is a risk that these events are
forgotten

 Immediate feedback is not possible
 Lag may lead users to assume that the

system is broken

So, as you can see, it really depends on your integration scenario which type of integration
you would need. Both synchronous integration (request-reply) and asynchronous integration
have their specifi c application cases, and their pros and cons, too. Sometimes, however, you
have no choice but to choose one over the other. That’s why you can consider the cons listed
above as something to keep in mind rather than something to try to avoid. To learn more
about diff erent types of these integrations, please refer to the following article on our blog
“3 Message Exchange Patterns in Application Integration You Should Know About (with
Examples)”.

In our next chapter, we’ll have a look at diff erent systems that enable these synchronous and
asynchronous integrations in the fi rst place. In other words, we’ll check out the systems that
move data

Chapter VIII

WHAT SYSTEMS MOVE
THE DATA?

31

Data Integration Best Practices | Jacob Horbulyk elastic.io

Obviously, data can not move itself. A processor somewhere must pick up and move data
somewhere else. So, while in the previous chapter of our e-book on Data Integration Best
Practices we talked about HOW we can move data, this time we are going to see WHAT moves
data between systems and the design choices that we need to consider for that.

 WHEN SYSTEMS MOVE DATA WITHOUT INTERMEDIARIES

Here we are basically talking about a system that either has some import / export /
synchronization capabilities by design or allows the user to defi ne or add such capabilities.

Some forms of this include SQL Server Push/Pull capabilities, cron jobs – i.e. jobs that “wake
up” on a specifi ed schedule – which push or pull data between systems, or cron jobs that run
import or export tasks to write data to or from certain fi les. Alternatively, an application might
have already been designed by its manufacturer to interact with other specifi c systems, which
is common to larger software suites such as Sage or Microsoft 360. Last but not least, there
may be customer plugins, extensions or customizations that allow one application to interact
with each other – something one would fi nd often in the eCommerce space, for example, with
Magento or Shopware.

Like with any other methods we have covered so far, this one, too, has its own advantages and
disadvantages.

Pros:

 This way of how we move data can be
more performant. Especially, if system
pairs are optimized to talk to each other

 If this is a standard pairing, then setup of
the integration can be quite fast

 There is no need to add and manage a
third system. There is also, by defi nition,
no vendor lock-in with respect to this
third system

 There is no single point of failure for all
integrations

Cons:

 As the system architecture grows, it
becomes more and more diffi cult to
visualize and document it. Maintaining
the confi gurations becomes more
diffi cult as well.

 Building integrations is generally a long
and expensive process

 You cannot replicate the integrations.
Every time you need to reuse an
integration, you need to do that from
scratch

 Missing standardisation in integrations
requires a know-how owner to be
present in case of changes

 Logging and monitoring mechanisms are
spread across systems. It is, therefore,
diffi cult to tell which jobs are running
on which system, and whenLifecycle
management of integration logic
becomes diffi cult

 The number of credential pairs you’d
have to manage will grow exponentially

32

Data Integration Best Practices | Jacob Horbulyk elastic.io

 You would need to rediscover and re-
implement the particular specifi cs of
each system per system pair, instead of
per system.

 Integration errors become hard to
manage

 INTEGRATION LAYER / IPAAS OPTION

The principle here is that there is a system that is separate from the
systems with the data. This third system’s sole responsibility
is to move data. There are several categories of software
product or service that is designed for that. Enterprise
Service Bus is one of them; a more modern and
lightweight solution is call integration platform
as a service – or iPaaS. Full disclosure: elastic.
io belongs to the second category and is also
currently working with the Open Integration
Hub foundation to produce an open source
version of our iPaaS.

The premise behind these
services/products is that all
integrations must solve the
following problems:

 Move data from
inside the system to
outside of the system

 Transform data from one system’s schema
to another system’s schema

 Allow ID Linking
 Execute the tasks
 Monitoring, error collect, logging and other

operational concerns

Many of these systems (including elastic.io) separate the tasks that
transform data and tasks that move data into separate modules. A special
software is then responsible for running and coordinating these tasks.
Some of the vendors sell the use of the software as a service, while others
sell a license to software that you must run and host yourself.

 INTEGRATION LAYER / IPAAS OPTION

The principle here is that there is a system that is separate from the
systems with the data. This third system’s sole responsibility
is to move data. There are several categories of software
product or service that is designed for that. Enterprise
Service Bus is one of them; a more modern and
lightweight solution is call integration platform
as a service – or iPaaS. Full disclosure: elastic.
io belongs to the second category and is also
currently working with the Open Integration
Hub foundation to produce an open source

The premise behind these

Transform data from one system’s schema
to another system’s schema

Monitoring, error collect, logging and other

Many of these systems (including elastic.io) separate the tasks that
transform data and tasks that move data into separate modules. A special
software is then responsible for running and coordinating these tasks.
Some of the vendors sell the use of the software as a service, while others

33

Data Integration Best Practices | Jacob Horbulyk elastic.io

Pros:

 Even if the number of integration grows
considerably, you still have one place to
overview them all

 Most if not all such systems are designed
to ensure reusability of integrations

 Many integration layer solutions
provide so-called connectors, which
are responsible for connecting with an
application without having to deal with
the actual code of this application

 Logging and monitoring is provided in
one place. For instance, this allows to
quickly fi nd the source of errors and the
reason for them

 You have a centralized place to control
integration processes, and

 A centralized place to manage
connections to other systems

Cons:

 Additional cost on integration project
that is recouped over time

 Just as with any other software as a
service, there is a risk of a vendor lock-in

 If the integration layer solution is down,
then all integrations fail by default

 Having a third system adds some
performance overhead since it requires
time to process and sort the information
it receives and sends

So, when would you choose one approach over the other? Using the inherent integration
capabilities of applications to integrate them directly makes sense when you have only a handful
of them. As soon as your business or the number of automated business processes start to
grow, having this kind of point-to-point integration will result in more of a tape spaghetti than
anything else. It doesn’t mean, though, that you have to buy expensive integration suits from
the start. There are many services out there that fi t various integration needs, from very little
and simple to heavily complex ones.

In our next chapter, we’ll talk about the diff erences in what is being integrated. For instance,
we’ll have a look at the specifi cs of integration with a shared authentication mechanism or the
diff erence between event propagation and data synchronization.

Chapter IX

DIFFERENCES IN WHAT
IS BEING INTEGRATED

35

Data Integration Best Practices | Jacob Horbulyk elastic.io

In the part 2 of our e-book, we have already talked about diff erent communication types
for data integration – synchronous vs. asynchronous. We have also talked about the main
diff erence between the types of systems that move data – direct data synchronization vs. an
integration layer. In this chapter, we would like to take a step back and review some diff erences
in what exactly we are going to integrate.

As an exception, we are going to use the word “integration” here in a more high-level sense.
Some systems are designed to interact over a fi xed protocol – in which case we are talking
about integration of permissions. Others are subsystems of a larger system, meaning that
here, we deal with integration in the sense of confi guration. There are yet other systems that
by design, have no integration capabilities with each other.

 INTEGRATION WITH A SHARED AUTHENTICATION MECHANISM

In this situation, you typically have a system that should solve a problem. In other words, a
common business application such as Microsoft AX or Navision. In order to use this system,
users need authentication and authorization. Usually, you can confi gure such a system to
keep track of its users with its own username/password mechanism.

However, these systems are also designed to exist within a corporate ecosystem and as a
result, to connect to one or more single sign-on systems. Common protocols for connecting
between individual applications and a sign-on system include:

 LDAP (Active Directory is an implementation of LDAP)
 OpenID / OpenID Connect (OAuth-based)
 SAML

In general, the application should work with one of these protocols. In most cases, it is not
possible for an outside provider to add these abilities if they don’t exist. For instance, if all
your business applications use LDAP and you want to buy a software that doesn’t support this
protocol but uses OpenID instead, it will be nearly impossible, and also impractical, to try to
map between the new application and the existing ones. So, you should fi nd out in advance

36

Data Integration Best Practices | Jacob Horbulyk elastic.io

what protocols your desired application supports.

Generally, if properly confi gured and implemented, these protocols can defi ne error handling
by design.

However, shared authentication mechanisms introduce a data synchronization problem.
Systems that work with such mechanisms fetch information about their users from a single
authorization service. This means that this service will receive the user information from the
protocol upon his sign-up. However, if the user was changed or deleted, the system wouldn’t
learn of that change unless we have set up a certain data integration fl ow to detect and apply
that change.

I NTEGRATION BETWEEN DIFFERENT PARTS OF A SYSTEM

In this case, you have one application or system which consists of smaller sub-systems (see
the picture above). And so, by default and by design, the application is optimized to work with
each subsystem being connected in the way this application “needs” it to be. Consequently,
these diff erent sub-systems are responsible for connecting to each other and ensuring that
this connectivity remains. Considering this, it would make no sense for an outside provider to
interfere with this structure for whatever reason. You know what they say - “If it isn’t broken,
don’t fi x it”.

EV ENT PROPAGATION BETWEEN SYSTEMS

This scenario assumes that you have two diff erent systems that were designed independently,
likely by diff erent vendors to solve two diff erent problems. As a result, there is no “native” way
for these systems to talk to each other. And so if an event occurs in one system, the other

37

Data Integration Best Practices | Jacob Horbulyk elastic.io

system needs to become aware of this event.

This scenario is similar to the data synchronization case bellow, except that it is simpler
and lower-level. Once an event has happened, the information about it doesn’t change. For
example, once you received an email, its contents stay the same.

DA TA SYNCHRONIZATION BETWEEN SYSTEMS

Just like with the previous scenario, we have here two independent systems, likely from
diff erent vendors, that solve two diff erent problems. And just like previously, these systems
don’t speak to each other by default. Therefore, if some data appears in one system, the
other system needs to learn about that. The same applies to any updates that happen to this
data. For instance, data could be all customers who have bought a particular product. While
buying a product is an event (see the section above), the up-to-date information about all
these customers is data. To get back to the data integration topic, often, you would care more
about synchronizing data and not events.

With this chapter, we have closed the part 2 of our e-book – where we described the diff erent

38

Data Integration Best Practices | Jacob Horbulyk elastic.io

types of integrations and integration systems. The next and the last part our e-book is about
best practices moving forward.

And in the very fi rst chapter of the fi nal part, we will touch upon the topic, that can give many
headaches to IT decision-makers – the question of costs. We will talk about costs calculations
for building, operating and maintaining integration projects – something to think about when
deciding for or against a third-party integration solution.

PART 3

INTEGRATION BEST
PRACTICES MOVING

FORWARD

C hapter X

INTEGRATION PROJECTS:
THE REAL AND HIDDEN

COSTS

41

Data Integration Best Practices | Jacob Horbulyk elastic.io

So far, in our e-book on Data Integration Best practices, we have covered the diff erent types
of high-level and low-level problems occurring in data integration projects. We have also
addressed the diff erent types of integration and the systems that move data. Nine chapters
later, we arrived at best practices moving forward.

In this last part, we are going to talk about some tips that revolve around preparing for and
running an integration project. And the very fi rst aspect that we are going to cover is the
pricing aspect of an integration project.

While defi ning a data integration project we should consider what we want to integrate, when
and how we want to integrate it. Once we have done this, we can move on with the last step
of the plan: the costs. The billion-dollar question... how deep should we dig into our pockets?

If we want to have a realistic idea of the cost of our integration
project, we should keep in mind that it is not a “one-time
payment” thing. Building, operating and maintaining integration
projects incur various costs and we should take all of them into
account before we embark on a project. Of course, vendors may
allow for trade-off s in these costs if the pricing available to the
purchaser is substantially diff erent from the pricing available to
the vendor. However, this is not something one should count on
by default.

So, in order to determine an accurate total cost of our
integration project, we should calculate the total cost of
ownership (TCO), which includes the following criteria:

CRE ATION COSTS

These are also known as research and development
costs. As the name suggests, they represent the costs
present at the beginning of the project, starting from
the research all the way down to the implementation. This
includes:

 Consulting and /or implementation costs
 Installation and rollout costs
 License costs if you decide to use an off -the-shelf product, or
 A tailor-made plan, which may include regular costs, such as:

• Perpetual license costs or subscription costs if it’s a SaaS product
• Maintenance and support costs
• Upgrades and updates costs (if any)

 Operation, administration and training costs

If we want to have a realistic idea of the cost of our integration
project, we should keep in mind that it is not a “one-time
payment” thing. Building, operating and maintaining integration
projects incur various costs and we should take all of them into
account before we embark on a project. Of course, vendors may
allow for trade-off s in these costs if the pricing available to the
purchaser is substantially diff erent from the pricing available to
the vendor. However, this is not something one should count on

So, in order to determine an accurate total cost of our
integration project, we should calculate the total cost of

costs. As the name suggests, they represent the costs
present at the beginning of the project, starting from
the research all the way down to the implementation. This

42

Data Integration Best Practices | Jacob Horbulyk elastic.io

OPE RATIONAL COSTS

These are the expenses you would have to keep the integration project running. Such expenses
include:
 Integration, monitoring, and administration costs
 Updates, upgrades and maintenance costs

Additionally, some other operational costs depend on what kind of product you have. For on-
premises or perpetual products you need to take into account:

 Hardware operational costs for PCs and/or virtual machines that you will require to run
the on-premises product

 Administrative costs on operating, securing, backing-up and ensuring the availability of
the product

For SaaS or cloud-based solutions you will quite likely have to deal with increasing traffi c costs.
This means that you might want to pay special attention to this aspect when selecting a vendor,
because depending on how data should ultimately be passing between your applications, it
can become very expensive very quickly.

RET IREMENT COSTS

Last but not least, these are the remaining expenses that we will have to endure if we decide
to leave the project. An example of such would be remaining license costs if we, for some
reason, terminate the contract before the end of the license agreement.

An integration project could be an iceberg of hidden costs, therefore before implementing it,
we should carefully consider each possibility in order to avoid unpleasant surprises and have
a more accurate budget planning.

In the next chapter, we will talk about how to describe integrations in such a way that everybody
is on the same page: the IT team, business management and any other stakeholders.

Chapter XI

HOW TO SET THE
FRAMEWORK FOR DATA
INTEGRATION PROJECTS

44

Data Integration Best Practices | Jacob Horbulyk elastic.io

Even though it’s IT who is responsible for connecting applications to ensure an effi cient data
exchange between them, it’s often the business users upon whose request an integration
project is initiated. Say, the marketing department needs to synchronize a new content
management system with the company’s CRM. When there is such a request, – or need, if you
like, – it is important to communicate the requirements clearly and accurately.

On the other hand, the IT team should also document their integrations accurately, so that
other parties such as technology partners or IT teams from other divisions can make sense of
it in future projects. And this is what we are dealing with in this chapter.

DESC RIBE INTEGRATIONS BETTER

DeSc riBe BuSineSS logic anD then mechanicS

There is a tendency to look at the available mechanics fi rst, and then defi ne the business logic
in terms of the mechanics. However, a far better approach is to clearly describe the business
logic and then look at the available mechanics to implement that business logic.

For example, we have a SOAP API that can do a number of actions. The “mechanics fi rst”
approach would be to document that we are going to connect action A to action B, and then
action D to action C. Easy to understand for a developer, harder so for non-techies.

The “business logic” approach fi rst, on the other hand, looks at what you want to have happened.
For instance, you want to update a contact in the application X and then you want to see this
update automatically appear in the application Y. After you defi ne that – then you can look at
whether a particular API can support this particular use case.

uSe verB + noun DeScriPtionS

When describing an interaction with a system,
business requirements focus on the noun
over the verb. For instance, a business user
might submit a request “I need Salesforce
contacts”. However, this is not exactly helpful
to understand what it is that they want to
achieve with Salesforce and contacts.

In addition to that, there are other problems
with such approach. For one, when we are
talking about describing the integration needs
in the context of an API design, adding or
changing nouns is lower cost than adding or
changing verbs. In concrete terms, if we have
‘read contact’, it’s easier to create ‘read order’
than it is to create ‘write contact’. It has to do with how most APIs
are designed – one action is created to be similar to other actions.
than it is to create ‘write contact’. It has to do with how most APIs
are designed – one action is created to be similar to other actions.

45

Data Integration Best Practices | Jacob Horbulyk elastic.io

Hence, ‘reading a contact’ and ‘reading an order’ are pretty similar, whereas ‘reading a contact’
and “writing a contact’ are not.

In addition to that, verbs indicate the direction of the data transfer and can better describe
dependencies. That is why it is necessary to keep in mind that the most important part of the
description is the verb (e.g. read, write) and only then the noun (e.g. contact, order).

cate goriZe integrationS

For each integration in your ecosystem, you should categorize it based on the following axes:

 Type of integration. Is it shared authentication or integration between parts of a
system? Or maybe event propagation vs. data synchronization?

 Type of communication. Does the integration require the request-reply or async
communication pattern?

 Identify the system moving the data
 Describe each interaction with a system using the verb + (if necessary) adjective + noun

pattern

form aliZe iD linking StrategieS

Last but not least, make it clear how the IDs of related records are linked. This is something
we’ve covered in more depth in our earlier article on data duplication and ID linking, so no
need to repeat it here.

CONS IDER USING AN IPAAS / INTEGRATION LAYER

It might sound like a very predictable recommendation coming from an iPaaS vendor, but
let’s look at this objectively. The more systems you add to your IT infrastructure, the larger the
company grows, the more sophisticated the business needs become – the more “interactions”
between various systems, applications, databases and what not across the whole organization,
and maybe even beyond it, take place.

First it was, say, simply automating the order fulfi llment. Then came synchronizing customer
and purchase data between your online and physical shop. Next thing you know, you need the
notorious 360° view of the customer, you have some intelligent algorithms running to meet
your customers’ subconscious desires, and your network of partners is rapidly growing. All
that needs consistent data exchange and synchronization.

As the number of systems and the complexity of the interactions between them increases,
trying to manage them the old-fashioned way will quickly lead to bottlenecks in IT projects,
hardly traceable bugs and errors, unclean or inconsistent data, and so on, and so forth.

Eventually, you will need some kind of an integration layer – be it iPaaS or any other comparable
system – to be able to keep track of integrations and integrated systems, to fi nd and resolve
errors quickly, to add new integrations within a reasonable timeframe and to enable teams
across the organization and beyond to work on the same data integration projects.

46

Data Integration Best Practices | Jacob Horbulyk elastic.io

And here’s the deal: You can regard this recommendation as coming not from an iPaaS
vendor, but from a company that has accumulated extensive insights into the complexity and
challenges of integration projects.

In our last chapter of this e-book, we continue looking at some best practices regarding the
overall implementation of such projects. Specifi cally, we will go through three types of project
environments and what part of the project each type includes. In addition to that, we will
review some best practices for log collection.

Chapter XII

SEPARATION OF
ENVIRONMENTS AND

LOG COLLECTION

48

Data Integration Best Practices | Jacob Horbulyk elastic.io

In the previous chapter, we took a look at how to describe integrations in such a way that
everybody – from developers to business users – understands the requirements correctly or
can follow what exactly has been done within the scope of this or that integration project. We
also discussed why you eventually might need some type of an integration layer to keep your
integration projects under control.

In this chapter, we continue reviewing some tips that revolve around preparing for and
running an integration project. As the title suggests, we will start with three types of project
environments and what part of the project each type includes, and fi nish with some best
practices for log collection.

SEPA RATION OF ENVIRONMENTS

In general, for each software system, there should be three types of environments: development,
staging and production. The same is also true for an integration project. So, let’s dive deeper

into what you need – or don’t need – to consider at each stage.

Deve loPment

 In general, at this stage in an integration project, you are building the
interactions to move data from inside the system to outside the system
and vice versa. As a result, the system should not be connected to

other systems in the environment. One possible exception would be
connecting to a staging or production authentication mechanism.
 The database should be mostly empty and resettable

 This environment should be used to test new integrations,
plugins, schema changes or other confi guration tweaks
 As the data isn’t real, there is no need to be worried

about data anonymization

Stag ing

 In this environment, opposite to the
development one, a system should be connected

only to other staging systems. One possible
exception is being connected to a production

authentication mechanism.
 The database should be full of test records with

comparable structure and volume to production systems
 In this environment, you can have more liberal access policies for

external vendors, developers, or any other “parties” involved
You should use this environment to verify the impact of changes on

other systems
 You also should be able to copy the confi guration to production
 As the data isn’t real, there is no need to be worried about data

anonymization.

into what you need – or don’t need – to consider at each stage.

Deve loPment

 In general, at this stage in an integration project, you are building the
interactions to move data from inside the system to outside the system
and vice versa. As a result, the system should not be connected to

other systems in the environment. One possible exception would be
connecting to a staging or production authentication mechanism.
 The database should be mostly empty and resettable

 This environment should be used to test new integrations,
plugins, schema changes or other confi guration tweaks
 As the data isn’t real, there is no need to be worried

about data anonymization

only to other staging systems. One possible
exception is being connected to a production

authentication mechanism.
 The database should be full of test records with

comparable structure and volume to production systems
 In this environment, you can have more liberal access policies for

external vendors, developers, or any other “parties” involved
You should use this environment to verify the impact of changes on

other systems
 You also should be able to copy the confi guration to production
 As the data isn’t real, there is no need to be worried about data

anonymization.

49

Data Integration Best Practices | Jacob Horbulyk elastic.io

ProD uction

 At this stage, admin access should be restricted only to a few trusted people. Should
you need to grant an additional access, it should be temporary and monitored

 At this stage, a system should only talk to other production systems

LOG COLLECTION

In an environment with multiple systems, each system will produce its own logs. Considering
this, it is particularly important to pay special attention to log management as part of data
integration best practices. Here are a few key points you should keep in mind.

file -BaSeD vS DataBaSe-BaSeD logging

Computer systems generally produce log information in discrete log statements. Such
statements can be written sequentially to a fi le or placed in a logging database. Log fi les are
simpler and generally more reliable but have some drawbacks. They are harder to search,
especially when there is a log statement per machine in a service.

Logging databases, on the other hand, are easier to search. In addition to that, they support
anonymization capabilities, even though this requires more setup. It is also possible to extract
+log fi les into a logging database – i.e. a database which sole purpose is to store logs.

log formatting

Many systems support the ability to have their logs formatted in several diff erent formats.
Since you will most likely need to integrate logs from various providers, you need to take care
of confi guring the systems you use to produce their log statements with the same format. This
will make integrating the logs from various diff erent systems a lot easier.

log eXtraction

In integration projects, a fair share of troubleshooting revolves around the problem of some
information to be expected to leave one system and arrive at another while it doesn’t. To fi nd
out why, you would typically pull the logs from both systems to check if the data left the fi rst
system at all and if yes, why it didn’t reach the destination system.

If you can aggregate all those logs in a central location, it becomes considerably easier to
search through them. Such aggregation is implicitly available in logging databases, since such
a database is generally shared between servers and systems. For log fi les, you would need to
do some extra setup to pull them from a server that produces them and push to a central
store where you can manage them more easily. It is also possible to extract log fi les into a
logging database, such as Graylog.

50

Data Integration Best Practices | Jacob Horbulyk elastic.io

log anonymiZation

Occasionally, logs might contain sensitive information. If you place all logs in a central place, it
can become a security risk. In order to reduce this risk, you can either:
Refrain from logging sensitive information in the fi rst place, or
confi gure your logging database to
anonymize data

log retention

Logs take up space, and space
costs money... The General Data
Protection Regulation (GDPR)
also stipulates that personal
information needs to be deleted
at some point, whether after some
predefi ned time period or upon request – and this means
deleted completely, including from logs. Therefore, you
need a clearly defi ned strategy for log retention. Often
organizations have automated processes to delete certain logged information after a specifi c
period of time.

With this chapter, our e-book on Data Integration Best Practices has come to an end. To
summarize, we have covered the diff erent types of various problems that can occur in data
integration projects. We have also addressed the diff erent types of integration, the systems
that move data and even the pricing aspect of such a project. Last but not least, we reviewed
some practical tips for preparing and running an integration project. There is only one thing to
be added, so jump over to the conclusion page.

predefi ned time period or upon request – and this means
deleted completely, including from logs. Therefore, you

51

Data Integration Best Practices | Jacob Horbulyk elastic.io

Conclusion
Nobody really reads conclusions, so we’ll be concise. Of course, we haven’t been able to cover
every single aspect of running an integration project successfully since each project is diff erent
– diff erent systems, diff erent environments, diff erent starting conditions, diff erent business
needs.

Nevertheless, we hope that this e-book will help you prepare and run an integration project at
least a little bit better than before – be it by giving you a new perspective or highlighting some
important points you might have not yet considered. With all that said and done, we wish you
good luck.

And of course, you are always welcome to try and see if our own elastic.io integration platform
as a service can help you achieve your integration goals faster ;-)

DATA INTEGRATION
BEST PRACTICES

jacoB horBulyk

An company

Rabinstrasse 4, 53111 Bonn, Germany I +49 (0) 228 53444221
info@elastic.io I www.elastic.io

Rabinstrasse 4, 53111 Bonn, Germany I +49 (0) 228 53444221

